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Abstract 

Objective: This study aims to collect a comprehensive and versatile dataset to provide a solid foundation to 

assess the performance of five promising models for early detection of oral cancer. 

Materials and methods: Clinical photographs of the entire mouth were obtained from patients visiting the Oral 

Medicine clinic at Cairo University's Faculty of Dentistry. These images were labeled and prepared to evaluate 

five CNN models, examining various data processing methods. The study incorporated augmentation techniques 

for all models and tested each model both with and without oversampling. 

Results: The dataset comprises 5, 616 intraoral images, which are subdivided according to the presence and type 

of oral lesion. These include 2,686 images classified as ‘Normal,’ 1,410 as ‘Benign and inflammatory,’ and 1,520 

as ‘Potentially malignant and malignant.’ The findings indicate that oversampling (V1) significantly improved 

model performance, particularly for GoogleNet, which consistently ranked among the top models in precision, 

accuracy, recall, and F1-score. InceptionResNetvr2 performed better in all evaluation metrics without 

oversampling. EfficientNet b4 showed similar results with and without oversampling, while ViT was the least 

consistent. 

Conclusion: These results highlight the dataset's variability and complexity, revealing challenges in processing 

large-scale clinical oral images. This advances versatile models for diverse diseases. 
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I. INTRODUCTION 

    Head and neck squamous cell carcinomas 

(HNSCC) are a leading cause of cancer-related 

mortality, with oral cancer accounting for 

5.8% of new cases in males and 2.3% in 

females according to the Globocan (Bray et al., 

2024; Ferlay et al., 2015). Cases projected to 

rise by 62% to 856,000 by 2035 (Shield et al., 

2017). Late-stage diagnosis is often due to 

limited awareness and healthcare access and 

results in over two-thirds of cases being 

identified after metastasis, contributing to high 

mortality rates (Kavyashree, Vimala and 

Shreyas, 2024; Ilhan et al., 2020). Advances 

in medical image analysis using artificial 

intelligence (AI) are innovative tools for 

diagnosis and treatment planning which offer 

promising solutions to these challenges 

(Warin et al., 2022).  

    Deep learning (DL), a subset of AI, builds 

algorithms by layering simple notions on top 
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of each other (Ferreira, Silva and Valente, 

2021). A major advantage of DL is its ability 

to automatically extract features from raw 

data, eliminating the need for manual feature 

engineering (Klang, 2018). Convolutional 

neural networks (CNNs), a type of supervised 

DL model, are highly effective for image 

analysis and classification, as they learn 

directly from raw pixels to final classifications 

without requiring manual feature extraction 

(Ghaffar Nia, Kaplanoglu and Nasab, 2023; 

Han, Liu and Fan, 2018). 

    Deep learning approaches generally rely on 

large datasets to train models effectively and 

avoid overfitting, a situation where model 

performs well on the training data but fails to 

generalize to new, unseen data (Chlap et al., 

2021). DL models trained on extensive 

datasets allow their learned weights to be 

transferred to other models for testing or 

further training, a process known as ‘transfer 

learning’ (Krishna and Kalluri, 2019).                     

   Transfer learning improves task 

performance by utilizing knowledge gained 

from solving related tasks in different contexts 

but within a shared domain. This approach 

enables the model to build on existing 

knowledge, rather than starting from scratch 

(Hosna et al., 2022).  

    The absence of publicly accessible datasets 

has limited researchers' ability to develop AI 

algorithms that could assist general 

practitioners in the early detection of oral 

cancer (Sengupta et al., 2022). Previous 

studies on the AI-based early detection of oral 

cancer have relied on limited datasets, with a 

maximum of 2160 unedited images, and have 

consistently recommended the use of larger 

datasets to improve model performance (Lee et 

al., 2022; Rashid et al., 2024; Tiryaki et al., 

2024; Welikala et al., 2020). 

    Additionally, small datasets usually suffer 

from class imbalance, which hinder AI-based 

data analysis. This imbalance arises because 

one class often significantly outnumbers 

others due to insufficient patient availability 

for certain diseases, high costs, privacy and 

security concerns, and data complexity (Abd 

Elrahman and Abraham, 2013; Goceri, 

2023). AI models trained on such imbalanced 

data tend to produce biased classifiers, 

disproportionately favoring the majority class 

and compromising the detection of minority 

classes, which are often clinically critical 

(Rajaraman, Ganesan and Antani, 2022; 

Larrazabal et al., 2020). These obstacles are 

usually managed by employing data 

augmentation and oversampling techniques 

(Goodfellow, Bengio and Courville, 2016). 

    Oversampling involves increasing the 

number of minority class instances by 

randomly replicating them, thereby balancing 

the class distribution (Fernández et al., 2018). 

Oversampling enhances model performance 

by increasing training samples and improving 

generalization, reducing overfitting risks. 

However, it can also cause overfitting if the 

generated data lacks diversity, leading the 

model to memorize existing patterns instead of 

learning new ones (Jalata, Khan and 

Nakarmi, 2024).  

    Our aim was to collect a comprehensive and 

versatile dataset to provide a solid foundation 

to assess the performance of five promising 

models for early detection of oral cancer. Our 

secondary outcome was to assess various data 

processing techniques that can enhance the 

predictive performance of these chosen 

models.  

II. MATERIALS AND METHODS 

    This study was conducted at the Oral 

Medicine Clinic, Faculty of Dentistry, Cairo 

University, between March and December 

2024. Ethical clearance was granted by the 

Faculty's Research Ethics Committee 

(Approval No. 6-3-24). A block diagram of the 

methodology of the study is shown in figure 1. 

Dataset collection and labeling 

    The dataset consists of 5,616 intraoral 

images in JPG format, with varying dimensions 

depending on the capture device, whether a 

smartphone or a dedicated camera. The images 

were classified by an oral medicine specialist 

according to the presence and type of oral 

lesions. The classification included 2,686 

images in the ‘Normal’ category, 1410 images 
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in the ‘Benign and inflammatory’ category, and 

1520 images in the ‘Potentially malignant and 

malignant’ category. Additionally, each 

category was organized into 11 distinct 

anatomical sites. With 3 subcategories per 

anatomical site, this yielded 33 possible 

combinations. A representative sample is 

shown in figure 2. 

 

Figure 1:  The deep learning workflow
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Figure 2:  A representative sample of the three categories: Normal; Benign and inflammatory; and Potentially 

malignant and malignant

Data Splitting Strategy: 

    Stratified sampling was employed to 

guarantee that each subset (Training, validation 

and testing) contains approximately the same 

percentage of each category as in the original 

dataset to avoid class imbalances. The dataset 

was split into three distinct subsets: a learning 

set for training the model, a validation set used 

for tuning the hyperparameters and monitoring 

the performance, and a testing set reserved 

exclusively for the final evaluation of the 

model, as shown in Table 1. 

Model Selection and Transfer Learning: 

We initially evaluated 17 pretrained models on 

ImageNet to identify the most effective 

architecture for our task. Based on their 

performance and computational efficiency, we 

selected the five promising models for further 

experimentation shown in Table 2. The number 

of parameters in deep learning refers to the 

internal variables learned from training data, 

which define how the model processes inputs 

and makes predictions. These parameters are 

adjusted during training to minimize errors. 

More parameters increase model complexity, 

requiring greater computational power and 

larger datasets, but can also lead to overfitting 

(Alpaydin, 2020).    

We explored multiple methods to integrate site 

information and image data for cancer 
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Table 1: Distribution of data among different phases of model development and evaluation according 

to lesion category 

 Learning 

(70%) 

Validation 

(15%) 

Testing 

(15%) 

Total  

Normal 1880 403 403 2,686 

Benign and inflammatory 986 212 212 1410 

Potentially malignant and 

malignant 

1,064 228 228 1520 

Table 2: The selected five models for our task and their description 

Model Description Number of 

parameters 

Vision 

Transformer 

(ViT): 

• A transformer-based model that processes image patches 

as sequences, leveraging self-attention for capturing long-

range dependencies (Alexey, 2020). 

86 million 

EfficientNet-

B4 

(NVIDIA):   

• A CNN that achieves optimal performance by 

proportionally scaling depth, width, and resolution 

ensuring high computational efficiency across various 

hardware platforms (Tan and Le, 2019). 

- 19 million 

 

Resnet 50: • A CNN based on ‘residual blocks’, which improves 

gradient flow, enabling deeper network training by 

minimizing the vanishing gradient problem—where 

gradients become too small to update earlier layers 

effectively—ensuring stable and efficient learning (He et 

al., 2016). 

25.5 million 

GoogleNet 

(Inception 

V1):   

• A CNN based on ‘inception modules’, which allow the 

network to capture features at multiple scales using 

parallel convolutions within the same layer (Szegedy et 

al., 2014). 

19.5 million 

Inception-

ResNet-V2 

• A hybrid architecture that integrates Inception modules 

with residual connections. This allows the architecture to 

benefit from both models, enabling faster training along 

with skipping some layers during training, which makes 

it efficient for feature extraction in complex medical 

images (Neshat et al., 2024).  

- 55.8 million 

 

classification in the previously mentioned 

models as shown in Figure 3: 

A. Image-Based Classifier:  

In this approach, only image features are used 

to predict the cancer class (Potentially 

malignant and malignant, Benign and 

inflammatory, normal). Site information is 

incorporated during the decision process using 

masking-based classification.  

Masking-Based Classification: One 

architectural extension involved leveraging site 

information to improve classification accuracy. 

Each model was trained to predict all 

combinations of risk levels and site locations (3 
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× number of sites). During inference, a mask 

was applied to the final logits to retain only the 

three probabilities corresponding to the known 

site of the input image. This masking 

mechanism ensured that predictions were site-

specific, which improved performance by 

reducing unnecessary cross-site confusion. 

B. Site-Enhanced Classifier: 

 A separate encoder processes the site 

information (one-hot encoded or embedded) 

and concatenates these features with the image 

features before the classification layer. This 

allows the model to use both visual and 

location-based data. 

C. Early Site Integration:  

In this architecture, site information is 

introduced earlier in the process by encoding 

the site and adding the resulting features to the 

image before being passed through the image 

encoder. This allows for site-specific patterns to 

be learned throughout the entire model. 

Figure 3: Different methods to integrate site information presented in 1. Image based classifier with 

masking, 2. Site-enhanced classifier, and 3. Early site integration
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In order to assess the impact of the 

oversampling technique, each selected model 

was trained and tested using three approaches: 

Version 1 (V1), utilized on-the-fly data 

augmentation and oversampling; Version 2 

(V2) utilized on-the-fly data augmentation 

without oversampling; while Version 3 (V3) 

utilized on-the-fly data augmentation, without 

oversampling, with the addition of combining 

contralateral mirror sides, e.g.: right and left 

buccal mucosa. 

Data processing: 

 

- On-the-fly data augmentation techniques: 

On-the-fly data augmentation is applied to 

enhance the variability and robustness of the 

model; it’s done dynamically during the 

training process rather than preprocessing and 

storing augmented data in advance. The 

augmentation parameters were empirically 

chosen to ensure the augmented images were 

still clinically meaningful. These techniques 

included: 

1. Random Resized Cropping: Each image was 

randomly cropped and resized to a fixed shape, 

with a scaling factor sampled from a range of 

0.8 to 1.0. This simulates zoom-in and zoom-

out effects.  

2. Random Rotation: Images were randomly 

rotated within a range of ±35◦. This 

augmentation helps the model generalize to 

rotated variations of the input.  

3. Random Affine Transformations: Affine 

transformations were applied, allowing for 

small random rotations (±10◦), translations (up 

to 15% in both horizontal and vertical 

directions), and shearing up to 20%. These 

transformations introduce geometric 

variability, improving spatial robustness.  

4. Color Jittering: The brightness of each image 

was randomly adjusted within a range of 50% 

to 100% of its original value. This addresses 

variations in lighting conditions in the dataset. 

Each augmentation technique was carefully 

chosen to introduce realistic variations in the 

data while preserving essential features 

necessary for accurate model performance. 

- Oversampling technique: 

The aim of trying this technique in V1 is to 

assess its impact on the results. It was done as 

follows: 

Identifying the Maximum Class Size: 

We first identified the site-risk level 

combination with the largest number of images 

in the dataset—the left buccal mucosa in the 

Potentially malignant and malignant category, 

containing 725 images. We used this maximum 

as the target sample size for balancing all 33 

combinations (derived from 3 risk categories 

across 11 anatomical sites). 

Data Augmentation and Oversampling: 

To address class imbalance in combinations 

with fewer images, we performed oversampling 

by duplicating existing samples, ensuring equal 

representation across all site-risk level 

categories. This approach prevented model bias 

toward majority classes while maintaining 

balanced exposure to each risk level. To 

counteract potential overfitting from duplicated 

images, we applied randomized data 

augmentation techniques during each training 

epoch, introducing variability that forced the 

model to learn generalizable features rather 

than memorizing repeated data. Finally, during 

image preprocessing, all augmented samples 

were resized to meet each model's input 

specifications: 224×224 pixels for GoogleNet 

(InceptionV1), ViT, and ResNet50; 380×380 

for EfficientNet B4; and 299×299 for 

InceptionResNetV2.  

Model Tuning:  

All experiments were conducted on Kaggle’s 

cloud-based platform using their free GPU 

resources. Model tuning is the process of 

optimizing hyperparameters for effectiveness 

(Alpaydin, 2020) 

cloud-based platform using their free GPU 

resources. Model tuning is the process of 
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optimizing hyperparameters for 

effectiveness (Alpaydin, 2020). 

Hyperparameters are predefined settings that 

shape the training process and model structure, 

remaining fixed while parameters evolve 

during training. Key hyperparameters include:  

• Batch size, which determines the number of 

samples processed simultaneously. 

• Dropout rate, which enhances model’s 

generalization by randomly omitting a 

percentage of the hidden units during training, 

avoiding co-adaptation of feature detectors 

which reduces overfitting. The dropout rate 

determines the fraction of neurons that are 

randomly dropped during training (Shen et al., 

2017).  

• Learning rate, which controls the speed of 

parameter updates. Smaller batches may 

converge faster but require a lower learning rate 

to avoid overshooting optimal minima (the 

point of minimal error), while larger batches 

can achieve better minima but lack the 

regularization effect of smaller batches due to 

their lower variance (Goodfellow, Bengio and 

Courville, 2016). Thus, it’s recommended in 

medical image classification to choose small 

batch size (usually 32 to 64) with a low learning 

rate (Kandel and Castelli, 2020) 

During the training process, the models were 

trained for a maximum of 40 epochs and the 

learning rate was 0.001. We experimented with 

batch sizes of 32, 58 and 128 but no significant 

differences in the model performance were 

observed across this range, consequently, an 

average batch size of 64 was selected. To 

optimize model performance, several 

techniques were fine-tuned, including early 

stopping, scheduled learning rate adjustments, 

and dropout regularization. 

Early stopping, a regularization technique 

that halts training when the model's validation 

performance stops improving, was used to 

monitor validation loss. Validation loss is a 

metric that measures the discrepancy between 

the model's predictions and actual target values 

on the validation set using a predefined loss 

function. Training was terminated if no 

improvement occurred over 10 consecutive 

epochs. 

The learning rate was initialized at a base value 

and systematically reduced by a factor of 0.75 

every 5 epochs to facilitate stable convergence. 

Additionally, dropout regularization was 

applied to the fully connected layers with a rate 

of 0.5 to mitigate overfitting and enhance the 

model's generalization capabilities.  

The models were trained using cross-entropy 

loss, a specific loss function used for 

classification tasks. It guides the training 

process by minimizing the difference between 

predictions and true labels. 

Pixel intensity values were normalized to 

ensure consistency across the dataset. Each 

channel’s mean and standard deviation were set 

to [0.5,0.5,0.5], which scales the pixel values to 

the range [−1,1]. This helps stabilize the 

training process and accelerates convergence.  

Evaluations metrics for assessing the 

primary outcome: 

The five models were assessed according to 

their precision, accuracy, recall and F1 score 

using the count of true positive (TP), false 

positive (FP), true negative (TN) and true false 

negative (FN) as shown in table 3.  

III. RESULTS  

After evaluating the performance of the three 

classification approaches—image-based 

classifier, site-enhanced classifier, and early 

site integration—the most compelling results 

were achieved with the site-enhanced classifier. 

Consequently, we selected the site-enhanced 

classifier method as our primary approach for 

further investigation, implementing V1, V2, 

and V3 variations. 
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Table 3: Evaluation metrics for the models' performances 

Evaluation 

metrics 

Definition Formula Indication 

1. Precision The accuracy of the 

positive predictions 

of the model. 

Precision = TP / (TP+FP) 

 

High precision values 

(reducing FP) allow the 

medical practitioners to 

avoid unnecessary 

interventions or referrals, 

especially crucial in 

diseases as oral cancer 

diagnosis and treatment.  

2. Recall/ 

sensitivity/ 

true 

positive 

rate (TPR) 

Quantifies how 

well a model can 

detect the lesions. 

 

 

Recall/Sensitivity/TPR = 

TP/ (TP+FN) 

 

Recall is essential in oral 

cancer screening, where 

higher values mean fewer 

missed cases (reducing 

FN) and validate model 

generalizability. 

3. Accuracy Measures the 

proportion of 

correctly predicted 

labels out of all 

labels 

Accuracy = (TP+TN) /  

(TP+TN +FP+FN) 

 

Accuracy offers a clear 

indication of the overall 

correctness of the model 

during testing. 

4. F1 score 

(F-

measure) 

Provides a 

balanced evaluation 

of model’s 

performance by 

assessing both 

precision and recall 

into a single metric. 

F1-score= 

2×Precision×Recall / 

(Precision +Recall) 

 

It effectively balances the 

trade-off between 

identifying all relevant 

cases (recall) and 

ensuring the accuracy of 

predictions (precision). 

 Results of V1, V2 and V3 with the site-

enhanced classifier approach in the five models 

is shown in table 4. 

Regarding precision scores, the analysis 

revealed that GoogleNet and EfficientNet B4 

achieved the highest precision scores of 0.81, 

with GoogleNet performing best under 

oversampling (V1) and EfficientNet B4 in the 

combined contralateral sides variant and 

without oversampling (V3). ResNet50 

performed best without oversampling (V2), 

attaining a precision of 0.80, while ViT reached 

the precision of 0.79 with and without 

oversampling (V1 and V2). 

In terms of accuracy, both GoogleNet and 

EfficientNet B4 reached the highest score of 

0.82 with oversampling (V1). EfficientNet B4 

maintained this performance in V3, while 

InceptionResNetV2 matched the same 

accuracy (0.82) without oversampling (V2). 

GoogleNet achieved the highest recall score of 

0.81 under oversampling (V1), though its 
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performance slightly decreased in V3 (0.79). 

ViT and EfficientNet B4 followed closely, both 

attaining a recall of 0.79 in V1, with 

EfficientNet B4 maintaining the same score 

(0.79) in V3. InceptionResNetV2 demonstrated 

consistent results across V2 and V3 without 

oversampling, matching the aforementioned 

performance. 

The F1-score was highest for GoogleNet and 

InceptionResNetV2 (0.81) in both V1 and V3. 

EfficientNet B4 closely followed with an F1-

score of 0.80 in V3, reinforcing its robustness 

across different experimental setups. 

The findings indicate that oversampling (V1) 

significantly improved model performance, 

particularly for GoogleNet, which consistently 

ranked among the top models in precision, 

accuracy, recall, and F1-score. 

InceptionResNetvr2 performed better in all 

evaluation metrics without oversampling. 

EfficientNet b4 showed similar results with and 

without oversampling, while ViT was the least 

consistent.

Table 4: Results of V1, V2 and V3 with the site-enhanced classifier approach in the five models.

Results of V1 with the site-enhanced classifier approach in the five models 

Model name Precision Accuracy Recall F1 score 

GoogleNet 0.81 0.82 0.81 0.81 

ViT 0.79 0.81 0.79 0.78 

EfficientNet B4  0.80 0.82 0.79 0.79 

InceptionResNetvr2 0.80 0.81 0.78 0.81 

Resnet 50 0.78 0.80 0.78 0.78 

Results of V2 with the site-enhanced classifier approach in the five models 

Model name Precision Accuracy Recall F1 score 

GoogleNet 0.77 0.79 0.77 0.77 

ViT 0.79 0.80 0.78 0.78 

EfficientNet B4  0.80 0.81 0.78 0.79 

InceptionResNetvr2 0.80 0.82 0.79 0.79 

Resnet 50 0.80 0.80 0.76 0.78 

Results of V3 with the site-enhanced classifier approach in the five models 

Model name Precision Accuracy Recall F1 score 

GoogleNet 0.80 0.81 0.79 0.81 

ViT 0.77 0.78 0.74 0.74 

EfficientNet B4  0.81 0.82 0.79 0.80 

InceptionResNetvr2 0.79 0.81 0.79 0.81 

Resnet 50 0.78 0.81 0.78 0.78 

IV. DISCUSSION 

For our study, we selected five pretrained 

models—GoogleNet, ViT, EfficientNet B4, 

InceptionResNetV2, and ResNet-50—based on 

their demonstrated efficacy in related research.  

Tiryaki et al. achieved strong performance 

levels using ResNet-50 and GoogleNet for a 5-

class tongue lesion classification task. ResNet-

50 achieved 90.64% accuracy in detecting 

geographic tongue, while GoogleNet attained 

an F1-score of 82.01% for median rhomboid 
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glossitis classification and 81.66% in hairy 

tongue classification (Tiryaki et al., 2024). Lee 

et al. employed EfficientNet B0 on a small 

dataset of 1,810 tongue images, achieving an 

accuracy of 0.9167, precision of 0.9212, and 

recall of 0.9176, motivating our choice of 

EfficientNet B4 (Lee et al., 2022). Additionally, 

Rashid et al. reported 100% precision and recall 

using InceptionResNetV2 on a dataset of 517 

intraoral images (augmented to 5,143) across 7 

diseases, inspiring its application to our larger 

and more complex intraoral dataset (Rashid et 

al., 2024). These models were chosen for their 

proven performance and adaptability to medical 

image analysis tasks.  

In our study, to address the common 

challenge of limited datasets in medical image 

analysis, three key approaches were 

implemented. First, the Dataset was expanded 

and diversified to include 5616 total original 

images, featuring over 30 distinct lesions. 

Second, On-the-fly data augmentation was 

employed in all of our experimental approaches 

to expand the size and diversity of the training 

set in deep learning. Third, to further mitigate 

dataset limitations, transfer learning was 

utilized. This allowed the models to leverage 

knowledge acquired from on large-scale 

datasets, enhancing their performance and 

generalization capabilities for the new 

classification task.  

We used oversampling in V1 to compensate 

for class imbalance seen in sites that have fewer 

images in oral cancer such as the labial mucosa 

and gingiva as they are less susceptible to oral 

cancer. In V3, we assessed the impact of 

incorporating contralateral sides (e.g.: Upper 

and lower labial mucosa, right and left buccal 

mucosa, and right and left lateral border of 

tongue) to increase the representation of 

underrepresented areas by combining them 

together, which modified the 11 anatomical 

sites into 8 sites classification. 

In cancer prognosis, high recall, low 

precision is generally prioritized because early 

detection of oral cancer is critical for effective 

treatment and improved patient outcomes. High 

recall minimizes false negatives, ensuring that 

fewer cancer cases are missed, which is 

essential given the severe consequences of 

delayed diagnosis. While low precision results 

in a higher number of false positives, leading to 

unnecessary follow-up tests or procedures, 

these are considered less harmful compared to 

the risks associated with undetected cancers. 

This approach aligns with the precautionary 

principle in medical diagnostics, where the 

benefits of identifying true positives early 

outweigh the inconveniences and costs of false 

positives, ultimately prioritizing patient safety 

and timely intervention. 

Accordingly, oversampling along with on-

the-fly augmentation provided better outcomes 

for cancer prognosis, as it achieves the highest 

recall while maintaining good precision. 

GoogleNet demonstrated superior performance 

with oversampling in V1, achieving both the 

highest recall (0.81) and precision (0.81) scores 

among all models. This dual advantage 

positions it as the optimal choice for clinical 

deployment, as it simultaneously minimizes 

missed cancer cases (false negatives) and 

reduces unnecessary interventions (false 

positives). While EfficientNet B4 matched 

GoogleNet’s precision (0.81) in V3 (adding 

contralateral sides without oversampling), its 

recall remained lower (0.79 vs. 0.81). While 

further validation is needed, oversampling 

appears to maintain reasonable sensitivity and 

precision tradeoffs, potentially making it useful 

for early detection workflows. 

The overall lower results compared to the 

aforementioned studies can be attributed to the 

higher complexity of our dataset, which 

includes larger image numbers, different pixel 

counts, greater variability in terms of lesion 

types, different intraoral anatomical sites, and 

risk categories. To investigate this hypothesis, 

we conducted a controlled experiment with 

InceptionResNetV2 using only 450 balanced 

images (without oversampling). While 

validation metrics appeared exceptionally high 

(99% accuracy, 98.7% recall), the subsequent 

severe performance drop during testing clearly 

demonstrated model overfitting. This contrast 
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underscores both the challenges of our 

comprehensive dataset and the risks of 

oversimplified training approaches. 

V. CONCLUSION 

The results reflect the inherent variability and 

complexity of the dataset, showcasing the 

challenges and opportunities in processing 

large-scale clinical oral image datasets. This 

marks a significant step forward in developing 

versatile models capable of addressing a wide 

spectrum of diseases.  

Future efforts will focus on addressing the 

challenges posed by the high diversity of image 

dimensions and complexity of anatomical sites. 

Additionally, further research will investigate 

how data flows through different architectures 

to optimize processing efficiency and model 

performance. 
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