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Abstract 

Dental mesenchymal stem cells (MSCs) constitute a promising candidate for tissue regeneration in regenerative 

medicine. While cellular transplantation of MSCs has shown potential for achieving functional tissue 

regeneration, several clinical challenges hinder its implementation. An alternative approach, harnessing the 

secretome of MSCs, has gained attention as a cell-free therapeutic strategy. The secretome encompasses the 

bioactive molecules released by MSCs, which have been shown to exert profound effects on tissue regeneration. 

This review comprehensively analyzes the dental MSCs secretome, understanding the potential of the MSCs 

secretome, addressing the obstacles associated with its utilization, and its potential as a valuable resource for 

regenerative therapies. In summary, the secretome of dental MSCs holds great promise as a cell-free therapeutic 

strategy for tissue regeneration. This review highlights the importance of further research and standardization 

efforts to fully exploit the therapeutic potential of the MSCs secretome and realize its clinical translation in 

regenerative medicine. 
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Introduction 

Mesenchymal stem cells (MSCs), 

including dental-derived stem cells, have 

emerged as a promising therapeutic option, 

being the focus of many studies in 

regenerative medicine 1. Although cellular 

transplantation of several types of MSCs is 

a viable approach for achieving functional 

tissue regeneration, implementing this 

paradigm in clinical settings is still 

hindered by several significant clinical 

challenges 2. It was hypothesized that the 

therapeutic effects of transplanted MSCs 

were attributed to their migration and 

differentiation into specialized cells. 

However, only a small percentage of cells 

were successfully engrafted within the 

compromised host tissue 3. Research has 

focused on characterizing the secretory 

capacity of MSCs in their surrounding 

environment. The chemicals released and 

referred to as secretome can be easily 

extracted and have been shown to impact 

tissue regeneration significantly 4,5.  

Compared to cell-based therapy, one of the 

advantages attributed to the MSCs 

secretome is its convenience in terms of 

preservation, sterilization, packaging, and 

long-term storage without compromising 

its qualities6. In addition to correctly 

determining appropriate dosages, 

efficiently producing large amounts of a 

substance, and avoiding invasive extraction 

methods. This approach offers significant 

time and cost savings 7,8. Nevertheless, 

certain obstacles must be addressed to fully 

utilize the MSCs secretome as a cell-free 

therapy and ensure its therapeutic efficacy.  

1. Mesenchymal stem cells 

MSCs are multipotent cells residing in 

numerous adult body tissues, hallmarked 

by their self-renewal abilities and 

differentiation potential upon proper 

stimulation 9,10. In 2006, the Mesenchymal 

and Tissue Stem Cell Committee of the 

International Society for Cellular Therapy 

established minimal criteria to identify and 

characterize human MSCs. They 

include the ability of the cells to adhere to 

plastic under standard culture conditions, 

the expression of CD105, CD73, and 

CD90, while lacking expression of CD45, 

CD34, CD14, CD11b, CD79a, CD19, and 

human leukocyte antigen-DR (HLA-DR) 

surface molecules as well as their in vitro 

trilineage differentiation capacity 9. 

MSCs have a crucial role in organogenesis 

and the postnatal repair of organs 11,12. Their 

multilineage differentiation potential, in 

addition to their potent immunomodulatory 

properties and ability to secrete a broad 

range of trophic factors and cytokines 

demonstrated promising cell-based 

therapies for various diseases 13. Although 

bone marrow-derived mesenchymal stem 

cells (BM-MSCs) are frequently utilized in 

clinical treatments 14,15, their harvesting 

from bone marrow is a highly invasive, 

time-consuming, and insufficient process 
16,17. Therefore, in recent years, researchers 

have identified stem cells derived from 

different dental tissues as innovative and 

potential candidates for cell-based therapy 

and regenerative medicine 18,19. 

2. Dental mesenchymal stem cells 

Dental MSCs are unique adult MSCs 

derived from the ectomesenchyme’s neural 

cells 20. Various subpopulations of dental-

derived stem cells have been discovered, 

such as dental pulp stem cells (DPSCs), 

periodontal ligament stem cells (PDLSCs), 

stem cells from apical papilla (SCAP), stem 

cells from human exfoliated deciduous 

teeth (SHED), dental follicle stem cells 

(DFSCs), and gingival mesenchymal stem 

cells (GMSCs) 21-26. Dental MSCs possess 

notable benefits, including their 

widespread accessibility, ease of 
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acquisition, and minimally invasive nature 
27,28. Consequently, they have emerged as a 

promising therapeutic avenue for tissue 

regeneration and repair 29-32. Detailed 

characteristics of human dental MSCs are 

shown in Table 1. 

3. Mesenchymal stem cell-based therapy 

and its limitation  

Despite the favorable therapeutic abilities 

of MSCs, the progress of MSCs-based cell 

therapies has been hindered due to the 

absence of a standardized protocol for the 

isolation process. The field lacks a 

standardized protocol for ex vivo 

expansion, clonal populations, and culture 

conditions 41,42. Generating good 

manufacturing practice (GMP) grade 

human MSCs necessitates the presence of 

an officially recognized stem cell 

laboratory and adherence to national 

regulatory frameworks. The ability to 

achieve a significant level of cell 

production and banking continues to 

present challenges, particularly due to the 

associated high costs. Additionally, there is 

a lack of consensus regarding the most 

suitable source of MSCs for various 

indications 43. 

Moreover, there is a lack of clarity 

regarding the effective delivery route, 

optimal dosage of infusion, and 

administration frequency 41,42. The effective 

route of delivery represents a significant 

challenge. The percentage of engrafted 

cells after transplantation is usually 

negligible, which may affect the survival 

rate and long-term therapeutic potential of 

MSCs 44. Although the intravenous route 

for human MSCs administration is 

considerably safe, it is essential to 

acknowledge the potential occurrence of 

more severe adverse effects, such as 

thrombosis or unfavorable inflammatory 

reactions 45.  

Additionally, stem cell transplantation 

carries the risk of tumorigenesis 46. Several 

factors can influence the probability of 

tumor formation following the 

transplantation of MSCs. These factors 

include the donor’s age, the characteristics 

of the host tissue, the presence of growth 

regulators in the recipient tissue, and the 

mechanisms that govern the activity of 

MSCs at the specific location where they 

are transplanted 47,48. Furthermore, the 

genetic stability and chromosomal 

aberrations of MSCs might be  

Table 1: Characteristics of human dental MSCs 33. 

Stem 

cells 

CD antigen expression Other 

representative 

markers 

In vitro 

differentiation 

capacity 

In vivo tissue 

formation 

capacity 

 Positive Negative    

DPSCs 
34-37 

CD9, CD10, CD13, 

CD29, CD44, 

CD49d, CD59, 

CD73, CD90, 

CD105, CD106, 

CD146, CD166 

CD14, 

CD31, 

CD34, 

CD45, 

CD117, 

CD133 

STRO-1, Nestin dent (od), mes 

(os, ad, cho, 

myo), ect (neu) 

dent (dentin, 

pulp), 

mes (adipose, 

muscle) 

SHED 
35,38 

CD13, CD44, CD73, 

CD90, CD105, 

CD146 

CD14, 

CD19, 

CD34, 

CD43, 

CD45 

STRO-1, Oct-4, 

Nanog, Nestin, 

SSEA-3, SSEA-4 

dent (od), mes 

(os, ad, cho, 

myo, endo), ect 

(neu) 

dent (dentin), 

mes (bone, 

microvessel) 
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PDLSCs 
37 

CD9, CD10, CD13, 

CD29, CD44, 

CD49d, CD59, 

CD73, CD90, 

CD105 CD106, 

CD146, CD166 

CD31, 

CD34, 

CD45 

STRO-1, 

Scleraxis 

dent (cem), mes 

(os, ad, cho), ect 

(neu) 

dent 

(cementum, 

PDL), mes 

(alveolar bone) 

DFSCs 
39 

CD9, CD10, CD13, 

CD29, CD44, 

CD49d, CD59, 

CD73, CD90, 

CD105, CD106, 

CD166 

CD31, 

CD34, 

CD45, 

CD133 

STRO-1, HLA 

class 1 

dent (cem), mes 

(os, ad, cho), ect 

(neu) 

dent 

(cementum, 

PDL), mes 

(alveolar bone) 

SCAP 
36 

CD49d, CD51/61, 

CD56, CD73, CD90, 

CD105, CD106, 

CD146, CD166 

CD14, 

CD18, 

CD34, 

CD45, 

CD117, 

CD150 

STRO-1, Nestin, 

Survivin 

mes (ad), ect 

(neu) 

dent (dentin, 

pulp) 

GMSCs 
40 

CD29, CD44, CD73, 

CD90, CD105, 

CD106, CD146, 

CD166 

CD34, 

CD45, 

CD117 

STRO-1, Oct-4, 

Nanog, Nestin, 

SSEA-4, HLA-

ABC, Sox-2, 

Tra2-49, Tra2-54 

mes (os, ad, 

cho), 

ect (neu, glia 

cell), end 

(definitive 

endoderm cell) 

mes (bone, 

cartilage, fat, 

muscle), ect 

(epithelia, 

neural tissue) 

Ad (adipocyte), cem (cementoblast), cho (chondrocyte), dent (dentinogenic lineage), ect (ectodermal lineage), end (endodermal 

lineage), endo (endothelial cell), hep (hepatocyte), PDL (periodontal ligament), mes (mesodermal lineage), od (odontoblast), os 
(osteoblast), , myo (myoblast), neu (neuronal cell). 

compromised due to modifications and 

prolonged in vitro culturing 48. The 

complex, underrecognized legal 

framework for cell-based therapies 

presents an additional barrier to clinical 

implementation 7.  

4. The era of cell-free therapy based on 

MSCs secretome 

The basic concept underlying MSCs 

therapy is their capacity to migrate to injury 

sites and differentiate into various cell 

types to promote tissue regeneration. 

However, it has been demonstrated to be 

insufficient to produce a significant 

therapeutic effect 49,50. Even 

though different studies suggest that MSCs 

exert various biological effects by 

promoting cellular proliferation and cell-

to-cell interactions 51,52, the accumulated 

experience indicates that their beneficial 

effects are primarily attributable to the 

secretion of paracrine factors 53. Therefore, 

the research era shifted toward cell-free 

therapy, introducing MSCs secretome as a 

promising candidate for application in the 

field of novel medical biotechnology 54. 

Secretome effectively addresses the 

challenges associated with the utilization of 

stem cells themselves. The safety concerns 

related to the transplantation of 

proliferating living cells, such as 

immunological incompatibility, 

tumorigenicity, emboli formation, 

transmissible infections, and the potential 

for MSCs to enter senescence, have been 

resolved. Additionally, secretome 

possesses advantages in dosage 

determination and potency evaluation 

compared to conventional therapeutic 

approaches. The secretome can be 

preserved without applying potentially 

toxic cryopreservative agents 7,54. 

Utilizing secretome-derived products 

presents a more cost-effective and feasible 
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option for clinical applications. The usage 

of secretome obviates the need for the time-

consuming and expensive processes 

involved in expanding and maintaining cell 

lines. This phenomenon can be attributed to 

the ability to pre-prepare secretome for 

therapeutic purposes in significant 

amounts, ensuring its availability for 

treatment when needed 7,54. Considering the 

aforementioned factors, asserting that 

secretome-based cell-free therapies provide 

a novel pathway toward safer, more 

standardized, scalable, and manageable 

treatments 55.  

5. Secretome as a novel approach for cell-

free therapy 

MSCs possess the capacity to generate a 

diverse array of chemokines, cytokines, 

growth factors, and extracellular matrix 

components. The secretome/ conditioned 

medium (CM) refers to a collection of 

molecular components that are actively 

secreted into the extracellular area. The 

secretome/CM is classified into two main 

categories: soluble proteins and a vesicular 

fraction composed of extracellular vesicles 

(EVs) 56. Bioactive factors encompass a 

diverse array of molecules, such as 

cytokines, chemokines, growth factors, 

interleukins, proteins, messenger RNAs 

(mRNAs) in the form of free nucleic acids, 

microRNAs (miRNAs), long non-coding 

RNAs (lncRNAs), and lipids including 

ceramide, cholesterol, and sphingolipids 
6,57.  

5.1. Soluble factors 

An array of growth/differentiation factors, 

including vascular endothelial growth 

factor (VEGF), platelet-derived growth 

factor (PDGF), platelet-derived endothelial 

cell growth factor, hepatocyte growth 

factor (HGF), epidermal growth factor, 

insulin-like growth factor I and II (IGF-I, 

IGF-II), fibroblast growth factor-2 (FGF-

2), basic fibroblast growth factor (bFGF), 

keratinocyte growth factor (KGF) 

fibroblast growth factor-7 (FGF-7), 

heparin-binding epidermal growth factor, 

neural growth factor (NGF), and brain-

derived neurotrophic factor (BDNF) 58 

were demonstrated in MSCs secretome. 

Furthermore, anti-inflammatory cytokines, 

including transforming growth factor- 

(TGF)- β1 and interleukins (IL), including 

IL-6, IL-10, IL-27, IL-17, and IL-13, and 

pro-inflammatory cytokines including IL-

8, IL-9, and IL-1β were identified. 

Moreover, granulocyte colony-stimulating 

factor (GCSF), granulocyte-macrophage 

colony-stimulating factor (GM-CSF), and 

prostaglandin E2 (PGE2) were present 58. 

The key benefit of bioactive molecule 

therapy is its capacity to enhance safety. 

Nevertheless, the effectiveness of bioactive 

substances as a therapeutic therapy is 

hindered by their limited stability in 

extracellular environments, as they are 

prone to rapid hydrolysis 59. 

5.2. Extracellular vesicles 

EVs are membrane-packed vesicles 

secreted by various cell types that act as a 

system of intercellular communication. 

They consist of a lipid bilayer that envelops 

bioactive molecules 60. EVs are 

distinguished by a distinct cargo consisting 

of mRNAs, miRNAs, proteins, or DNA. 

The genetic material remains protected 

throughout the oxidative extracellular 

environment and can be sent to remote cells 

to regulate the healing of injured tissue 61. 

Based on size and biological origin, EVs 

are classified into exosomes (EXOs), 

microvesicles (MVs), and apoptotic bodies.  

5.2.1. Exosomes (EXOs): EXOs are 

homogenous and small, spanning in 

diameter from 40 to 100 nanometers. They 

are liberated from the cell via exocytosis 

due to fusion with the cell membrane; they 

originate in multivesicular bodies 62,63. 
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Annexins, tetraspanins (CD63, CD81, and 

CD9), and heat-shock proteins (Hsp60, 

Hsp70, and Hsp90) are abundant in EXOs 

which are usually used for their 

identification 64. 

5.2.2. Microvesicles (MVs): MVs, also 

called ectosomes, exhibit a wide range of 

sizes, reaching from 100 to 1000 nm in 

diameter. Their surface markers originate 

from the cells that produce them and are 

generated via direct branching from 

cellular plasma membrane 65,66. MVs 

comprise lipids and proteins in addition to 

mRNA and miRNA 67. 

5.2.3. Apoptotic bodies: The largest type 

of EVs discharged by cells during the 

process of apoptosis, commonly exhibiting 

a size range of 1000-5000 nm. The process 

of synthesis of apoptotic bodies is a 

dynamic phenomenon governed by the 

morphological stages of apoptotic cell 

disassembly, which are regulated by protein 

kinases 68. Apoptotic bodies contain a 

variety of active biomolecules and intact 

organelles derived from apoptotic dead 

cells 69. 

5.3. Mechanism of EVs in intercellular 

communication 

EVs secreted by cells serve as paracrine 

factors, engaging in interactions with 

recipient cells by migration to remote sites 

and subsequent targeting of specific cells 70. 

Functional communication between EVs 

and cells can involve different types of 

interactions, including fusion of the EVs-

plasma membrane, endocytosis uptake, and 

binding of EVs to the cell surface via the 

ligand-receptor without delivery of the 

contents 71. These interactions exemplify 

the diverse mechanisms through which 

EVs can engage with cells. Intercellular 

communication via EVs offers the 

advantages of transporting hydrophobic 

materials, protecting the content against 

deterioration by external enzymes, and 

their negligible in vivo immunogenicity 72. 

6. Approaches to produce MSCs 

secretome and its products 

The preparation of MSCs-CM consists of 

leaving the cells in culture for a certain 

period before using centrifugation to 

collect their components. The supernatant 

must be centrifuged to remove detached 

and apoptotic cells, waste tissue, and cell 

debris. The resulting product can be 

utilized directly or further processed 

through filtration, fractionation, and/or 

concentration 73. Using ultrafiltration 

technology, various filtration modules with 

several molecular weight cut-offs 

(MWCOs) can be selected, allowing a 

complete or partial retention of the 

secretome components 73.  

Centrifugal ultra-filter units with MWCOs 

of <3 KD are used to retain and concentrate 

the whole CM 74,75. By fractionating CM, it 

is possible to correlate a particular 

molecular subset or CM fractions with a 

specific measured effect 1. 

Several methods were established to isolate 

and purify EVs. Although each method has 

pros and cons, ultracentrifugation-based 

procedures are the gold standard for 

generating high-quality EVs. Secretome (or 

EVs) can be sterilized using filtration 

without apparent loss of efficacy 76. 

7. Characterization of MSCs secretome 

Various approaches can be employed to 

identify the secreted proteins of the 

secretome [Figure 1].  The most employed 

techniques for identifying bioactive 

components in the MSCs-CM are liquid 

chromatography with tandem mass 

spectrometry (LC−MS/MS), in addition to 

proteomic and transcriptomic analyses 77-79. 

Targeted detection techniques such as 
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antibody array, enzyme-linked 

immunosorbent assay (ELISA), flow 

cytometry, and western blotting are 

typically employed to quantify known 

proteins. These methods are used to isolate 

the proteins in the secretome. These 

techniques are usually followed by mass 

spectroscopy, serial analysis of gene 

expression, DNA microarray, and RNA 

sequencing. The techniques mentioned 

above may be integrated with 

bioinformatics instruments (software and 

databases) to assess and analyze the 

secretome-proteome outcomes 80,81. 

 

Figure 1: Characterization of stem cell secretome. 

 

 

Real-time quantitative PCR detecting 

system (qPCR) is utilized to assess the 

enrichment and composition of RNA in the 

secretome of stem cells. Other physical 

characteristics of EVs, such as surface 

charge, particle number, size distribution, 

and morphology, can be assessed through 

the utilization of instruments such as 

electron microscopes and particle size 

analyzers 82,83. 

8. MSCs secretome storage 

The majority of studies stored dental 

MSCs-CM at -80 °C 84-87, while some at -

20 °C 88,89. These various forms of storage 

did not affect CM's capabilities. Previous 

research has shown that freeze-thaw does 

not affect the size of exosomes or 

compromise the integrity of EVs 

membranes; however, the size of exosomes 

decreases by 60% after two days at a 

physiological temperature of 37°C 90. 

Exosomes are stable at -20°C for up to six 

months without experiencing a loss of 
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metabolic activity 91. Although Zhou et al. 

reported that exosomes frozen at -20°C 

experienced substantial depletion, freezing 

at -80°C enabled nearly complete recovery 

even after a storage period of up to seven 

months 92. 

9. Dental MSCs secretome biological 

effects  

9.1. Anti-apoptotic effect 

Pro-apoptotic proteins, like Bcl-2-

associated x protein (Bax), tumor protein 

53 (p53), and cleaved caspase-3, were 

significantly reduced following dental 

MSCs-CM-based therapy in addition to 

significant increase in the expression of 

anti-apoptotic B-cell lymphoma 2 (Bcl-2) 

in parenchymal cells, preventing their loss 

during inflammation 6,93-95 [Figure 2].    

9.2. Angiogenic effect 

Dental MSCs-CM promoted angiogenesis 

via secretion of pro-angiogenic factors, 

including VEGF-A, FGF-2, PDGF, IGF-1, 

angiopoietin-2, metalloproteinase (MMP)-

3, TGF-β, GM-CSF, GCSF, and IL-8 6,96 

[Figure 2].   . 

9.3. Neuroprotective and neurotrophic 

effects 

Several factors responsible for reduction of 

neurotoxicity such as VEGF, fractalkine, 

and the Aβ-degrading enzyme neprilysin 

were detectable in dental MSCs-CM 97. 

Additionally, dental MSCs-CM contains 

growth factors that support neural growth 

and differentiation, such as BDNF, NGF 98-

100, nestin, Sox-1, β-tubulin III 100, HGF 98 

and IGF 99, besides Neurofilament 200 and 

S100 101-103 [Figure 2].    

9.4. Immunomodulatory and anti-

inflammatory effects 

The immunoregulatory effects of dental 

MSCs-CM are achieved through the 

upregulation  of M2 macrophages and the 

modification of pro-inflammatory 

conditions 104-106. In addition, dental MSCs-

CM inhibited the production of pro-

inflammatory cytokines, including NF-κB, 

interferon (IFN)-γ, tumor necrosis factor 

(TNF)-α and interleukins (IL-1β, IL-18, IL-

17, IL-13, IL-6, IL-4) 44,82,83,107 and 

enhanced the anti-inflammatory cytokines 

(TGF-β1, IL-10) 108. The balance between 

these anti-inflammatories and pro-

inflammatory cytokines may determine the 

final effect [Figure 2].   

9.5. Osteogenesis 

Dental MSCs-CM promotes osteogenesis 

by upregulating osteoblastic and 

chondrogenic marker expression (Osterix, 

SOX-5) 109. TGF-β- bone morphogenetic 

proteins (BMP) signaling pathway plays a 

pivotal role in osseous regeneration 

induced by dental MSCs-CM through 

upregulating the expression of TGF-β1, 

TGF-β2, BMP2, BMP4, MMP8, runt-

related transcription factor 2 (Runx2)g, and 

SOX-9 was detected 110, as well as VEGF, 

and collagen type I alpha 1 chain 

(COL1A1) 111.  
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Figure 2: Biological effects of MSCs-CM. 

 

9.6. Modulation of oxidative stress 

In an in vitro model of multiple sclerosis, it 

has been documented that PDLSCs-CM 112 

and GMSCs-CM 93 reduced oxidative stress 

markers such as superoxide dismutase 

(SOD)-1, inducible nitric oxide synthase 

(iNOS), and cyclooxygenase (COX)-2, 

significantly. Furthermore, the 

immunomodulatory and anti-apoptotic 

properties of these MSCs-CM significantly 

inhibited the death of neural cells. 

Similarly, DPSCs-CM and SHED-CM 

reduced levels of reactive oxygen 

species (ROS) in neural cells 113, a murine 

model of multiple sclerosis 114, and 

Alzheimer’s disease 99.  

10. The superiority of dental MSCs 

secretome and its derivatives 

In terms of composition, the secretome 

profile of dental MSCs differs from that of 

other MSCs. SCAP-CM demonstrated 

elevated expression of proteins linked to 

metabolic processes and transcription, as 

well as chemokines and neurotrophins 

compared to BM-MSCs-CM 115. A total of 

124 cytokines exhibited shared expression 

among DPSCs-CM, SCAP-CM, and 

DFSCs-CM. It is worth mentioning that 

DPSCs-CM exhibited a considerably 
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elevated expression level of 23 cytokines 

that are associated with odontoblast 

differentiation, as well as pro-inflammatory 

and anti-inflammatory cytokines 116. All 

dental secreted factors are listed in Table 2. 

 

Table 2: The main factors found in the dental MSCs-secretome 117. 

MSCs Secretome Contained Factors 

DPSCs 
118 

CM EGF, Endoglin, Endothelin-1, Eotaxin-1, Follistatin, G-CSF, 

GM-CSF, HGF, Leptin, IFNα2, IFNγ, IL-12, IL-13, IL-15, IL-

1β, IL-5, IL-8, IL-9, PDGF-AA, TGF-α, TGF-β1, TGF-β2, 

TGF-β3, TNFα, TNFβ, VEGF-A, VEGF-C, VEGF-D 

PDLSCs 
119,120 

CM 99 proteins, including matrix proteins, enzymes, growth factors, 

cytokines, and angiogenic factors 

EVs Non-coding RNAs: antisense RNAs, long non-coding RNAs, 

miRNAs (MIR24-2, MIR142, MIR335, MIR490, and MIR296) 

SCAP 
115,121 

CM 2046 proteins, included chemokines, angiogenic, 

immunomodulatory, 

anti-apoptotic, neuroprotective factors and extracellular matrix 

proteins 

EXOs 593 PIWI-interacting RNAs (piRNAs) 

SHED 
122 

CM FGF-2, IL-10, PDGF, TGF-β3, HGF, INF-γ, VEGF, IL-6 

GMSCs 
123 

EVs Transcripts for growth factors such as TGF-β, FGF, VEGF, 

neurotrophins, 

such as NGF, BDNF and members of the Wingless/Integrated 

family 

DFSCs 
124 

CM Osteogenic lineage related proteins 

 

 

  

In comparison to BM-MSCs-CM, DPSCs-

CM demonstrated enhanced angiogenic, 

anti-apoptotic, and neurite outgrowth 

capabilities, migration activity, 

immunomodulation in vitro 125,126, and 

vasculogenesis in vivo 126. DMSCs-CM 

derived from DPSCs, SCAP, and DFSCs 

exhibited a greater capacity for nerve 

regeneration than BM-MSCs-CM, as 

indicated by significantly increased colony 

formation and neurite extension. This 

indicates that DMSCs-CM are associated 

with enhanced neural differentiation and 

maturation, which could be attributed 

to significantly higher expressions of 

BDNF, neurotrophin-3 (NT-3), and BDNF 

in DMSCs-CM. 

Owing to their neural crest origin, Dental 

MSCs-EVs exhibit superior therapeutic 

potential in models of neurological 

disorders, dental diseases, and wound 

injury compared to other MSCs-EVs 127. 

Compared to BM-MSCs-EXOs, DPSCs-

EXOs have promoted differentiation in 

Tregs by increasing the release of anti-

inflammatory cytokines IL-10 and TGF-β 
128. Five crucial miRNAs involved in 

microtubule cytoskeleton organization 

were identified in the EVs of PDLSCs 119. 

Additionally, SCAP-EXOs comprised 

RNAs that primarily function in binding 
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and catalytic activities, metabolic 

processes, cellular behavior, and biological 

control 121. 

11. Novel strategies to increase 

therapeutic efficacy and production of  

MSCs secretome 

To attain the intended therapeutic efficacy, 

it appears impractical to increase the 

dosage and frequency of administration of 

MSCs-CM. Therefore, boosting the 

potency of MSCs-CM, with subsequent 

enhancement of therapeutic benefits is a top 

priority. Various ways have been proposed 

to enhance the optimization of MSCs-CM 

components, which can be broadly 

categorized into genetic modification 

group and non-genetic modification group 

(pre-activation/priming) 129 [Figure 3]. 

11.1. Modifications in culture conditions 

(priming) 

An area of intense research has emerged 

around priming MSCs to enhance their 

immunomodulatory properties, migratory 

potential, and/or hypo-immunogenicity. 

The most widely used priming techniques 

involve treatment with:  

11.1.1. Three-Dimensional (3D) culture    

3D platforms are constructed to 

mimic the naive cellular niches in vivo. 

Three-dimensional cultures have been 

shown to increase cell yield and stimulate 

the secretion of trophic factors in 

comparison to conventional monolayer 

cultures 130. Characterization of 3D-MSCs-

CM revealed enrichment of the obtained 

CM profile on anti-inflammatory actors 

such as IL-10 and lower levels of pro-

inflammatory cytokines such as IL-6 or IL-

2 compared with 2D-MSCs-CM 131. 

11.1.2. Culture medium 

Sagaradze et al. identified variations in 

factor concentrations among MSCs-CM 

cultured in two distinct growth media 132. 

the utilization of MSCs-CM in vivo may 

elicit immunologic reactions due to the 

variability and uncertain composition of 

fetal bovine serum (FBS) across different 

batches, which includes impurities 133,134. 

Serum-free or chemically defined medium 

is the most acceptable alternative 135. 

Chemically defined medium is not only 

serum-free but also devoid of hydrolysates 

or supplements whose composition is 

unknown. Notably, cultures of MSCs 

lacking serum secreted a greater quantity of 

angiogenic factors 136,137. Additionally, 

researchers noted that MSCs-CM obtained 

in the presence of serum exhibited 

cytotoxicity when used at full 

concentration (100%). However, its 

beneficial effects diminished upon dilution, 

unlike MSCs-CM obtained under serum-

deprived conditions 138. 

11.1.3. Hypoxia 

Under hypoxic conditions, there was an 

observed upregulation in the total protein 

content of the secretome. Notably, the 

intermittent hypoxic state significantly 

increased the expression of NGF and GCSF 
139. miRNAs concerned with the 

proliferative, differentiative, and 

inflammatory phases are overexpressed 

under hypoxia 140. Hypoxia has been 

documented to stimulate the release of 

hypoxia-inducible factor (HIF-1), a protein 

that exerts regulatory effects on cellular 

processes, including metabolism, 

differentiation, proliferation, migration, 

and survival 141.  

11.1.4. Biochemical stimuli 

Biochemical stimuli have become a widely 

used strategy in therapies based on the 

MSCs-CM. Stimulated MSCs secrete 

molecules and EVs to hinder biological 
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signals and, thus, produce more significant 

amounts of miRNAs, metabolites, lipids,  

Figure 3: Schematic illustration of the up-to-date approaches for stem cell culture, cell 

pretreatment, secretome extraction, and secretome delivery. 

and proteins 142. IFN-γ and TNF-α were 

utilized to prime MSCs. The exosomes 

obtained from these cells exhibited 

noteworthy enrichment of therapeutic and 

bioactive molecules with pro-angiogenic, 

proliferative, anti-inflammatory, and 

antifibrotic properties 143. Moreover, 

exposure to IL-1β and TNF-α enriches the 

CM in proteins such as GM-CSF, monocyte 

chemoattractant protein-1 (MCP-1) and 

MMP 8 & 9 144.  

11.1.5. Mechanical stimuli 

Mechanical stimulation of MSCs is another 

method for manipulating their behavior and 

secretome profile. MSCs-CM are 

responsive to their substrate’s rigidity and 

other mechanical properties 145. Surface 
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topographies can modify the morphology 

of stromal cells and exert a quantitative 

impact on their cytokine secretion profile 
146. 

11.2. Genetic modifications 

The application of genetic modification 

techniques to manipulate the expression of 

specific genes in MSCs through 

transfection or transduction methods has 

garnered growing interest. Transfection is 

the nonviral introduction of nucleic acids 

into cells via microinjection, 

electroporation, and nanocarriers (lipids, 

polysaccharides, peptides, inorganic 

materials, and polymers) 147. Transduction 

includes the introduction of nucleic acids 

into cells via viral vectors, such as 

lentivirus and adenovirus. Transfection is 

less effective in comparison. Nonetheless, 

concerns regarding the immunogenicity 

and mutagenicity of the viral vectors pose 

safety risks that prevent the clinical 

application of this method 148. 

12. Delivery routes of MSCs secretome 

MSCs-CM can elicit their therapeutic 

effects via various routes of administration. 

However, the immediate challenge in this 

field is still to find a safe, effective, and 

controlled manner for its delivery 149. There 

are systemic and local delivery routes. 

Systemic delivery is the most prevalent 

method for delivering MSCs-CM. 

Nevertheless, intravenous administration 

frequently leads to an overabundance of 

MSCs-CM accumulation in the liver and 

spleen; therefore, in this instance, multiple 

injections at a higher dosage are necessary 

to achieve the desired therapeutic effect 
150,151. Local delivery, with the assistance of 

various biomaterials, can enhance specific 

tissue delivery and retention with lower 

working dosage, increase stability, and 

advance the functioning of MSCs-CM. 

Local administration could be either 

device-assisted technology or biomaterial-

based approaches 152.  

Device-assisted technology includes 

inhalation, which is non-invasive and easy 

to use with good patient compliance 153, and 

needle-free injection drives CM through 

the skin with shock waves, gas pressure, or 

electrophoresis 154. Biomaterial-based 

approaches include (i) Successfully 

developed nanoparticles to overcome 

biological barriers, avoid nonspecific 

biodistribution, and evade immune 

clearance, leading to efficient and effective 

delivery in vivo 155,156. (ii) Injectable 

hydrogels can function as a barrier to 

prevent rapid clearance of encapsulated 

MSCs-CM, increasing their retention for 

sustained release in situ 157,158. (iii) 

Microneedle is a minimally invasive 

technique that can be used for the 

controllable and sustained release of 

different drugs. (iv) Scaffold patches 

fabricated using synthetic polymers, 

collagen, fibrin, and decellularized matrix 

with biocompatibility and biodegradability 

properties can be excellent carriers for 

various cells and growth factors 159,160. 

13. The therapeutic role of dental MSCs-

CM in the non-dental tissue regeneration 

13.1. Neural tissue regeneration 

Dental-CM and its EVs demonstrated 

the ability to promote neuro-regeneration in 

the central and peripheral nervous systems 
161. In a mutant superoxide dismutase 

mouse model of amyotrophic lateral 

sclerosis, systemic administration of 

DPSCs-CM improved motor neuron 

survival and neuromuscular junction 

innervation 162. Additionally, as a potential 

treatment for Parkinson’s disease, SHED-

EXOs grown on three-dimensional 

laminin-coated alginate microcarriers have 

been discovered to prevent the apoptosis of 
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dopaminergic neurons, thereby protecting 

nerves 163.  

13.2. Immunological diseases 

SHED-CM intravenous injection 

significantly ameliorated arthritis 

symptoms and reduced joint degradation in 

a rat model of rheumatoid arthritis owing to 

the anti-inflammatory properties of SHED-

CM, which were linked to the promotion of 

M2 macrophage polarization and the 

suppression of osteoclastogenesis 164. By 

reducing the polarization of M1 

macrophages and inhibiting the production 

of ROS via the ROS-MAPK-NFkB-P65 

signaling pathway, DPSCs-EXOs can be 

utilized as a therapeutic intervention for 

spinal cord injury 165. PDLSCs-CM and 

EVs demonstrated immunosuppressive 

effects in a mouse model of experimental 

autoimmune encephalomyelitis via 

reduction of pro-inflammatory cytokines 

IL-17, IFN-γ, IL-1β, IL-6, TNF-α, and 

induce anti-inflammatory IL-10. In 

addition to attenuating apoptosis-related 

p53, Caspase 3 and Bax expressions 166. 

13.3. Cardiovascular injuries 

SHED-CM intravenous administration 

significantly reduced the size of myocardial 

infarction in addition to significant 

reduction in levels of cytokines including 

TNF-α, IL-6, and IL-β, thereby protecting 

the mouse heart from hypoxic injury, as 

evidenced by enhanced cardiac function. 

This disparity could be attributed to the 

elevated hepatocyte growth factor (HGF) 

and VEGF concentrations  167. 

13.4. Solid-organ regeneration 

DPSCs-CM demonstrated the existence of 

a variety of liver lineage proteins, including 

hepatocyte nuclear factor and hepatocyte 

growth factor receptor in vitro, thereby 

promoting liver repair and regeneration 168. 

Moreover, SHED-CM decreased lung 

fibrosis and improved survival rates in a 

mouse model of acute lung injury 169.  

13.5. Tumor progression 

One notable characteristic of dental MSCs-

EVs is their favorable drug-loading 

capacity and ability to target tumors 

specifically. The utilization of DPSCs-

EXOs cultured with gemcitabine 

demonstrated a notable suppression of 

cellular proliferation in pancreatic cancer 

cell lines 170. 

13.6. Soft tissue regeneration 

Local administration of GMSCs-EVs 

exhibiting upregulation of IL-1 receptor 

antagonist facilitates the cutaneous wound 

healing process, hence providing more 

evidence of the advantageous impact of 

GMSCs-EVs on the restoration of soft 

tissue damage 171. In addition, GMSCs-

EXO combined with hydrogel promoted 

healing of diabetic rats’ skin wounds 

through upregulation of collagen 

deposition, and remodeling in addition to 

promotion of re-epithelialization, 172. In 

addition, GMSCs-EXO enhanced 

angiogenesis which was confirmed through 

increased density of microvessels in the 

wound bed suggests that the skin defects in 

diabetic rats are receiving an adequate 

supply of oxygen and nutrients. These 

factors can facilitate the healing process 172.  

14. The therapeutic role of dental MSCs-

CM in the dental and paradental tissue 

regeneration 

14.1. Periodontal diseases 

Healthy PDLSCs-EXOs can suppress the 

excessive activation of the classical Wnt 

signaling pathway within an inflammatory 

milieu, which preserves the osteogenic 

potential of endogenous stem cells and 
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facilitates the process of periodontal bone 

repair 173. Periodontal bone loss was 

inhibited in a mouse model of periodontal 

maxillary bone loss by EVs derived from 

TNF-α preconditioned GMSCs. This effect 

could be ascribed to the increased 

expression of miR-1260b in GMSCs-EVs 
174. Furthermore, SHED-EXOs inhibit 

lipogenesis and promote bone formation, as 

evidenced by the upregulation of Runx2 

expression in mouse periodontitis model 
175. 

14.2. Dentin-pulp complex regeneration 

SCAP-EXOs introduced into the root 

fragment containing BM-MSCs and 

transplanted subcutaneously into 

immunodeficient mice promoted dentin-

pulp complex regeneration. This effect 

could be attributed to activating the 

mitogen-activated protein kinase signaling 

pathway 176. Furthermore, DPSCs-EXOs 

effectively stimulated odontoblastic 

differentiation in an ectopic tooth 

transplantation model; they induced the 

regeneration of dental pulp-like tissue 177. 

DPSCs-EVs combined with a treated 

dentin matrix demonstrated promising 

potential for promoting dentinogenesis in a 

pulp exposure model employing miniature 

pigs 178. Tertiary dentin development was 

stimulated in a rat molar pulpotomy model 

in response to the long-term release of 

DPSCs-EXOs and exosomes derived from 

an immortalized murine odontoblast cell 

line (MDPC) implanted in a microsphere 

synthetic polymeric carrier 179. 

14.3. Temporomandibular joint (TMJ) 

disorders 

DPSCs-CM administration in a rat model 

of chemically induced TMJ osteoarthritis 

revealed reduced inflammation, enhanced 

ECM and subchondral bone repair and 

regeneration through downregulation of 

pro-inflammatory genes (MMP-13, MMP-

9, MMP-3, and MCP-1) 180. By diminishing 

iNOS, MMP-13, and IL-1β, SHED-CM 

significantly inhibited temporal 

inflammation and improved the integrity of 

the destroyed condylar cartilage 181. 

14.4. Bone regeneration 

The regenerative effects of DPSCs-EVs in 

the alveolar bone defect rat model 

suggested that alveolar bone MSCs are 

capable of absorbing DPSCs-EVs, which in 

turn significantly promoted the expression 

of Runx2, alkaline phosphatase, and 

osteocalcin, and the osteogenic 

differentiation capacity of alveolar bone 

MSCs 6 weeks post-operatively 182. When 

combined with materials, GMSCs and 

DPSCs derived EVs facilitated bone 

defects healing in rats and increased the 

expression of Runx2, VEGF-A, and 

osteopontin, which are osteogenic markers  
57,183. Additionally, the administration of 

GMSCs-CM resulted in a considerable 

upregulation of ossification-related genes 

in rat calvaria bone abnormalities 184. 

14.5. Salivary glands dysfunction 

DPSCs-EXOs restored the activity of 

salivary gland epithelial cells during 

Sjogren’s syndrome, suggesting that they 

may have therapeutic potential in the 

treatment of Sjogren’s syndrome by 

inhibiting the mortality of salivary gland 

epithelial cells induced by IFN-γ 185. 

Moreover, DPSCs-CM 

ameliorated Sjogren’s syndrome by 

promoting regulatory T (Treg) cell 

differentiation and inhibiting T helper 

(Th17) cell differentiation by upregulating 

IL-10 and TGF-β1 and downregulating IL-

4 and 17a 186. 

15. Challenges and limitations 

surrounding the therapies based on 

secretome from dental MSCs 
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Despite the promising results of dental 

MSCs-CM and its derivatives as a cell-free 

approach, their role as sole therapy still 

requires further investigation. It is essential 

to match donor characteristics and tissue 

sources as an initial phase to develop and 

apply MSCs-CM-derived products 

precisely 7. The lack of standardized MSCs 

isolation/expansion and secretome 

production protocols, continues to be 

among the main issues raised in the 

literature. This has led to unpredictability 

regarding the biological effects of 

secretome products, which appear to be 

significantly impacted by the preparation 

method 187. Determining the exact 

biochemical composition of MSCs 

secretome, in addition to the activity and 

half-life of its constituents, has proven to be 

an extremely challenging task 7. 

Furthermore, the most significant obstacle 

to the therapeutic implementation of EVs is 

time-consuming and costly isolation 

processes. Moreover, the purified EVs 

yield is insufficient to permit extensive 

clinical application 64. Therefore, for 

MSCs-CM to be utilized in clinical 

practice, they must be expanded under 

well-controlled, scalable, and standardized 

GMP culture conditions 73.  

Conclusions  

Based on existing literature, dental MSCs-

CM and its derivatives possess diverse 

capabilities relevant to regenerative 

medicine fields. Originating from dental 

tissues, these MSCs-CM demonstrate 

superior therapeutic potential compared to 

other MSCs-CM in tissue regeneration. 

Consequently, their utilization is 

increasingly recognized as a beneficial 

therapeutic approach. 

The secretome of dental MSCs and its 

derivatives offer several advantages over 

cell-based therapies. These benefits 

encompass various aspects such as 

streamlined manufacture, ease of storage, 

handling, packaging, extended product 

shelf life, and their potential as readily 

available biological therapeutic agents. 

Moreover, secretome-based therapies raise 

fewer safety concerns, positioning them as 

a prominent focus in regenerative 

medicine. 

EVs play a crucial role in transferring 

bioactive molecules and protecting their 

cargo from hydrolysis. As a result, EVs are 

emerging as a promising cell-free therapy. 

Among all MSCs-EVs, dental MSCs-EVs 

hold excellent application prospects for 

both local and systemic diseases. 

Despite the remarkable therapeutic 

potential of dental MSCs-CM and its 

derivatives, their clinical translation faces 

obstacles related to production and efficacy 

limitations. Factors such as culture 

conditions, separation techniques, 

characterization methods, and 

preconditioning strategies significantly 

impact the regenerative potential of dental 

MSCs secretome. 

Further investigations are essential to 

assess MSCs-CM and its derivatives 

therapeutic efficacy, understand 

mechanisms of action, and address short 

and long-term complications. 

Complementary studies should focus on 

optimizing dental MSC populations, 

environmental cues, and secretome 

fractions for specific applications. 

Additionally, emphasizing the role of the 

microenvironment and exploring EVs' 

biological characteristics will enhance their 

therapeutic potential. Lastly, developing 

standardized methodologies and validation 

assays will facilitate clinical 

implementation. 
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List of abbreviations 

Ad Adipocyte 

Bax Bcl-2-associated x protein 

Bcl-2 B-cell lymphoma 2 

BDNF Brain-derived neurotrophic factor 

bFGF Basic fibroblast growth factor 

BM-

MSCs 

Bone marrow derived-mesenchymal 

stem cells 

BMP Bone morphogenetic protein 

Cem Cementoblast 

Cho Chondrocyte 

CM Conditioned medium 

COL1A1 Collagen type I alpha 1 chain 

COX-2 Cyclooxygenase-2 

Dent Dentinogenic lineage 

DFSCs Dental follicle stem cells 

DPSCs Dental pulp stem cells 

Ect Ectodermal lineage 

ELISA Enzyme-linked immunosorbent assay 

End Endodermal lineage 

Endo Endothelial cell 

EVs Extracellular vesicles 

EXOs Exosomes 

FBS Fetal bovine serum 

FGF Fibroblast growth factor 

GCSF Granulocyte colony-stimulating 

factor 

GM-CSF Granulocyte-macrophage colony-

stimulating factor 

GMP Good manufacturing practice 

GMSCs Gingival mesenchymal stem cells 

Hep Hepatocyte 

HGF Hepatocyte growth factor 

HLA-DR Human leukocyte antigen-DR 

HIF-1 Hypoxia-inducible factor 

HSP- Heat shock protein-  

IFN-α Interferon-α 

IFN-γ Interferon-γ 

IGF- Insulin growth factor- 

IL- Interleukin- 

iNOS Inducible nitric oxide synthase 

KGF keratinocyte growth factor 

LncRNAs Long non-coding RNAs 

MCP-1 Monocyte chemoattractant protein-1  

MDPC Immortalized murine odontoblast cell 

line 

Mes Mesodermal lineage 

miRNAs MicroRNAs 

MMP- Matrix metalloproteinase- 

mRNAs Messenger RNAs 

MS Microsphere 

MSCs Mesenchymal stem cells 

MVs Microvesicles 

MWCOs Molecular weight cut-offs 

Myo Myoblast 

Neu Neuronal cell 

NF-κB Nuclear factor kappa light chain 

enhancer of B cells 

NGF Neural growth factor 

NT-3 Neurotrophin-3 

Oct-4 Octamer-binding transcription factor-

4 

Od Odontoblast 

Os Osteoblast 

P53 Tumor protein 53 

PDGF Platelet-derived growth factor 

PDL Periodontal ligament 

PDLSCs Periodontal ligament stem cells 

PGE2 Prostaglandin E2 

ROS Reactive oxygen species  

Runx2 Runt-related transcription factor 2 

SCAP Stem cells from apical papilla 

SHED Stem cells from human exfoliated 

deciduous teeth 

SOD-1 Superoxide dismutase-1 

Sox- Sex determining region Y-box 

transcription factor- 

TGF- Transforming growth factor- 

Th-17 T helper-17 

TMJ Temporomandibular joint 

TNF-α Tumor necrosis factor-α 

TNF-β Tumor necrosis factor-β 

Treg Regulatory T cell 

VEGF- Vascular endothelial growth factor- 
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