Volume 5 (2023) | Issue 4| Pages 943-954

Original Article

The effect of different post systems having various sizes on the fracture resistance of endodontically treated teeth. An in vitro study

Mashael M. Abdo¹, Maged M. Negm², Fatma M. Saaed³

Department of Endodontics, Faculty of Dentistry, Cairo University

Email: mashael093070@miuegypt.edu.eg

Submitted: 30-04-2023 **Accepted:** 30-04-2023

ABSTRACT

Aim: The aim of the present study was to evaluate the influence of different post systems (fiber and titanium posts) with different post sizes on the fracture resistance of the endodontically treated single rooted teeth. **Subjects and Methods**: Fifty-four freshly extracted maxillary central incisors were selected and divided into three main groups according to the post system used. Group A were prepared to receive Rely-X posts with different sizes. Group B were prepared to receive titanium posts with different sizes. Group C were prepared to receive obturation only (control group). The specimens were prepared with Protaper Universal rotary files. Intervention groups A and B were divided, each into three sub groups. Group A was divided into Rely-X yellow coded, Rely-X Red Coded, Rely-X Blue Coded. While Group B was divided into Short Titanium Posts, Medium Titanium Posts and Long Titanium Posts. Specimens were then loaded to fracture in a universal testing machine. The maximum load at which the teeth fractured and the fracture patterns were recorded.

Results: There was a statistically significant difference among all groups; the control group showed the highest fracture resistance followed by the Rely-X Red Coded (R.X.R.C.) group, while the Short Titanium Posts (S.T.P.) group showed the least fracture resistance.

Conclusion: The control group (obturation only) recorded the highest fracture resistance while the short titanium posts (STP) recorded the least fracture resistance.

Keywords: Fracture resistance, fiber posts, Rely-x posts, titanium posts, Protaper universal rotary files, maxillary central incisors, Universal testing machine.

Introduction

Endodontically treated teeth were shown to be more prone to fracture than vital teeth. This may be attributed to the loss of the tooth structure and dehydration as a result of caries and endodontic procedures (**Rodríguez-Cervantes** *et al.* **2007**)⁽¹⁾.

Post systems are widely used nowadays as a mean of reinforcement for the endodontically treated teeth while receiving a final restoration (Walton *et al.* 2002)⁽²⁾. However, there is a controversy regarding the use of the posts in endodontically treated teeth (Faria *et al.* 2011)⁽³⁾.

It was thought that posts weaken the endodontically treated teeth by pre-disposing them to fracture through the drilling and the preparation process for post space. The failure rate of these restorations after several years of service was thought to be still high, with a prevalence of failures because of vertical root fractures that ranges between 2% and 5% (**Russell** *et al.* **2017**)⁽⁴⁾. At most of the cases, these fractures cannot be treated. The appearance of such vertical fractures

was related to both the teeth restoration process and post-design (Khasnis *et al.* 2014)⁽⁵⁾.

On the other hand, many authors thought that posts reinforce the endodontically treated teeth through the bonding to both the dentin and the core material which may improve the distribution of forces along tooth roots, thereby contributing to higher tooth survival rates (**Piovesan** *et al.* **2007**)⁽⁶⁾.

Post-design is defined by several different parameters such as the length, diameter or material and their longitudinal shape. Greater post-diameter entails removing a greater amount of dentine, thus weakens the tooth structure so it was recommended to limit the diameter of the post (**Rodríguez-Cervantes** *et al.* **2007**)⁽¹⁾.

The demands for simpler procedures and esthetic restorations led to the development of prefabricated posts. Therefore, it is of great importance to study the influence of different post systems

with different post sizes on the fracture resistance of the endodontically treated single rooted teeth.

Subjects and METHODS

Materials, instruments and devices used in this study are tabulated in table (1)

Materials / Instruments /	Manufacturers			
Devices				
Autopolymerizing Acrylicresin	Acrostone, Egypt			
ADSEAL root canal sealer	METABOIMED, KOREA			
Diamond round	Dentsply Maillefer, Ballaigues Switzerland			
EDTA	Prevest Dentpro, Ltd., Jammu, India			
Endo access bur	Dentsply Maillefer, Ballaigues Switzerland			
Endodontic condenser	Dentsply Maillefer, Ballaigues Switzerland			
Gutta percha points	METABOIMED, KOREA			
K-files	MANI,Matsutain Seisakusho Co., Tochigi-ken ,Japan			
Light cured composite	3m ESPE, USA			
Rely-X unicem resin cement	RelyX Unicem Aplicap, 3M ESPE, St. Paul, MN,USA			
Rely-X fiber posts	3M ESPE, USA			
Protaper Universal rotaryfiles	Dentsply, maillefer, Switzerland			
Protaper gutta percha	ercha DENTSPLY, Maillefer, swizerland			
Titanium posts	Nordin swiss dental production			
Silicon impression material	Lascod, Italy			
Universal Testing Machine	Lloyd instruments Ltd., Fareham, UK			
Sodium hypochlorite	Clorox, Tenth of Ramadan city, Egypt			
Steriomicroscope	Nikon MA 100, Japan			

Table (1): Materials, instruments and devices used in this study

The trial was double blinded, where the outcome assessor and statistician were blinded during outcome evaluation.

Sound Freshly extracted human single canaled maxillary central incisors were used. They were

obtained from department of surgery, faculty of dentistry, Cairo university, Cairo, Egypt.

The collected teeth were cleaned of any hard deposits by using an ultrasonic scaler and were disinfected in 5.25% sodium hypochlorite for 5 minutes.

A standard access cavity was prepared in all the samples, using a diamond round bur and endo access bur with air-water cooling spray.

Apical patency was determined by inserting a size 10 k-file till it was evident from the apical foramen. Working length was established by inserting #10 K-file till it was shown at the root apex then the length was measured (tooth length), followed by substracting 1 mm from it (Salameh *et al.* 2008)⁽⁷⁾.

Root canals were mechanically prepared with Protaper Universal rotary files according to the manufacturer recommendations (Mobilio *et al.* $2013)^{(8)}$.

The canals were enlarged up to F3 rotary file of the Protaper Universal system, then the canals were irrigated with sodium hypochlorite solution 5.25% between each successive files through a side vented needle 27 gauge to remove the debris (Salameh *et al.* 2008)⁽⁷⁾.

All canals were finally rinsed with 5 ml of 17% EDTA solution for 1 minute followed by5 ml 5.25 % sodium hypochlorite to remove the smear layer then finally rinsed with 3ml saline solution. (Jayasenthil *et al.* 2016)⁽⁹⁾. They were then dried with paper points size F3.

For root canal obturation, ADSEAL root canal sealer was used along with Protaper gutta percha point size F3 using modified single cone technique with accessory gutta percha and spreaders size 25. Excess gutta-percha was removed with a flame-heated endodontic condenser of suitable size, and vertical condensation was performed.

Grouping of the samples:

Prepared root canals were divided into three groups, 18 specimens each, according to the postsystem used.

Figure (1): Grouping of the samples

The post length was adjusted to be two thirds the root length. The post space was prepared using the specific drill assigned by the manufacturer for each post. The Rely x posts are color coded according to the drills.

- The yellow drill for size one posts, color coded yellow.
- The red drill for size two posts, color coded red.
- The blue drill for size 3 posts, color coded blue.

The drills used for titanium posts are as follows:

- Drills no. 3 for posts size 3.
- Drills no.5 for posts size.5.
- Drills no. 6 for posts size .6.

Posts were cemented with the Rely-X luting cement in all the study samples which were applied inside the canals using an intra-canal tip (Salameh *et al.* $2008)^{(7)}$.

To simulate the periodontal ligament exists around roots of human teeth, the following steps were done:

Root surfaces of all the teeth were marked at a point 2mm. apical to the cementoenamel junction and

were immersed in a blue inlay wax to create a 1 mm thick space.

Each tooth was vertically mounted in within a resin block. Prefabricated cylindrical plastic tubes of 2 cm length and 2 cm diameter were used.

The samples were then inserted into the acrylic resin blocks. When the acrylic resin showed partial signs of polymerization, specimens were removed from the resin blocks and then the blue inlay wax was removed from the root surfaces.

A silicon based light body, impression material was immediately injected into the acrylic resin molds and the teeth were reinserted into the resin blocks.

By doing so, a standardized silicon layer simulating the periodontal ligaments was created around the roots (Akkayan and Gülmez 2002)⁽¹⁰⁾.

Loading of the samples:

All the samples were subject to the fracture resistance test using the universal testing machine.

Fracture resistance was tested on the universal testing machine at a crosshead speed of 1 mm/ minute and an angle of 135 degrees to the long axis of the tooth at the center of the palatal fossa (Akkayan and Gülmez 2002)⁽¹⁰⁾.

The load at which fracture had occurred indicated by the software of the testing machine was recorded in Newton's indicating the fracture resistance.

Figure (2): Fracture resistance test

The fractured specimens were examined under a stereomicroscope at 30X to determine the fracture pattern.

Fracture patterns were classified into:

- 1. Vertical fracture.
- 2. Horizontal fracture.
- 3. Oblique fracture (chisel).
- 4. Vertical + horizontal fracture.
- 5. Vertical + oblique fracture.
- 6. Comminuted fracture.

Statistical analysis:

Statistical analysis groups was performed with IBM^{3®} SPSS^{4®} Statistics version 25.

Parametric data were analyzed using one-way ANOVA followed by Tukey post hoc test for

multiple group comparisons. The significance level was set at $P \leq 0.05$ within all tests.

main groups

RESULTS

The highest fracture resistance value was found in the control group with a mean and standard deviation of 783.3 ± 437.6 N followed by the R.X group with a mean and standard deviation of 501.01 ± 132.79 N. The least fracture resistance value was recorded in the T.P group with a mean andstandard deviation of 347.31 ± 115.8 N.

There was a statistically significant decrease in the fracture resistance between the R.X and T. P groups in relation to the control group (p value<0.001). There was also a statistically significant decrease in the fracture resistance of the T.P in relation to the R.X group (P < 0.001).

Table (2): The mean and the standard deviation of the fracture resistance values between thethree

	Group control (N)	Group R.X (N)	Group T.P (N)	p value
Fracture resistance	783.3 ± 437.6	501.01±132.79	347.31±115.8	<0.001

Figure 3: Bar chart representing the mean fracture resistance values of the three groups.(*): denotes significant difference versus control group.(#): denotes significant difference versus R.X group

Overall comparison between the seven groups showed a statistically significant difference in fracture resistance. (p = 0.036)

Pair wise comparison revealed a statistically significant difference between the S.T.P. group and the control group. However, there was no significant difference between all othergroup pairs

Table (3): Mean, SD, and the results of Kruskal Wallis test for comparison of fracture resistancebetween the seven subgroups:

	Mean	SD	P - Value
R.X.Y.C	513.8 ^{ab}	131.2	
R.X.R.C	562.4 ab	149.3	
R.X.B.C	442.3 ^{ab}	195.9	
S.T.P.	204.3 ^b	99.7	0.036
M.T.P.	400.3 ab	128.6	
L.T.P.	380.5 ^{ab}	106.4	
Control	783.3ª	437.6	

*Different small letters indicate statistical significance by Mann Whitney U test with Bonferroni correction.

Figure (4) : Bar chart representing the mean of the fracture resistance values in the seven subgroups

Mode of fracture:

There was no significant difference between the seven sub groups regarding the mode of fracture (p = 0.610).

1. In group (R.X.Y.C), vertical fracture

pattern (Fig 5 A, B) occurred in 50% of the samples, horizontal fracture pattern occurred in 25% of the samples (Fig 6 A, B) and vertical + horizontal occurred in 25% of the samples (Fig 8 A, B).

Figure 5: (A, B) two teeth showing vertical fracture

2. In group (R.X.R.C), vertical fracture occurred in 25% of the samples, horizontal fracture pattern (Fig 6 A, B) occurred

in 25% of the samples and oblique fracture pattern occurred in 50% of the samples (Fig 9 A, B)

Figure 6: (A, B) horizontal fracture in two specimens

In group (R.X.B.C), oblique fracture pattern occurred in 75% of the samples (Fig 9 A, B) and comminuted fracture pattern (Fig 20 A, B) occurred in 25% of the samples

Figure 7: (A, B) comminuted type of fractur

In group (S.T.P), vertical fracture occurred in 25% of the samples (Fig A, B) oblique fracture pattern occurred in 50% of the samples (Fig 9 A,B). Vertical and Horizontal fracture (Fig 8 A, B) occurred in25% of the samples.

Figure 8: (A, B) vertical + horizontal fracture in two teeth

3. In group (M.T.P), oblique fracture (Fig 9 A, B) occurred in 25% of the samples, vertical+ oblique fracture pattern occurred in 25% of the samples (Fig 10 A, B) and 50% of the samples showed comminuted fracture pattern (Fig 7 A, B).

Figure9: (A, B) oblique fracture

4. In group (L.T.P), vertical fracture occurred in 25% of the samples, oblique fracture occurred in 25% of the samples and comminuted fracture occurred in 50% of the samples.

5. In the control group, vertical fracture occurred in 25% of the samples, oblique fracture occurred in 25% of the samples. Vertical + oblique fracture (Fig 10 A, B) occurred in 50% of the samples.

Figure 10: (A, B) vertical + oblique fracture

<u>**Table (4):**</u> Percentages and results of Fisher's exact test for comparison of mode of fracture in the seven sub groups:

	R.X.Y.	R.X.R.	R.X.B.	S.T.P	M.T.P	L.T.P	Contro	p value
Vortical	C 50%	25%	0%	•	•	•	25%	value
vertical	30%	2370	070	2370	070	2370	2370	
Horizontal	25%	25%	0%	0%	0%	0%	0%	
Oblique	0%	50%	75%	50%	25%	25%	25%	
Vertical +	25%	0%	0%	25%	0%	0%	0%	0.725
Horizont								
al								
Vertical	0%	0%	0%	0%	25%	25%	50%	
+								
Oblique								
Comminuted	0%	0%	25%	0%	50%	25%	0%	

Figure 11: Bar chart representing the percentages of different fracture patterns in the seven sub groups.

DISCUSSION

Endodontically treated teeth with a great loss of dental structure often require posts and cores to secure retention for a fixed restoration. Loss of retention of posts or root fractures of the restored teeth are considered major obstacles for their use (Vikhe 2021)⁽¹¹⁾.

Among the three main groups, the highest fracture resistance value was found in the control group (specimens with obturation only) followed by the Rely-X group. The high results of the control group could be due to the meticulous preservation of tooth structure as the quality and quantity of remaining tooth structure is considered a major factor in the fracture resistance of endodontically treated teeth (Soares *et al.* 2008)⁽¹²⁾.

Rely-X results were higher than those of titanium. These results could be explained by the value of the virtue of the modulus of elasticity of Rely-X post that is (18.6) GPa being similar to that of dentin (18.2GPa). While that of titanium is extremely higher than that of dentin. This could be responsible for low failure loads of titanium post group specimens (Cantoro *et al.* 2011)⁽¹³⁾. These results were in accordance with Tavano⁽¹⁴⁾ *et al.* 2020 who stated that no other restorative material would be better than the mechanical and aesthetic properties of natural dentin (akkayyan and gulmez $2002^{(10)}$, Cantoro et al. $2011^{(13)}$).

The results of this study were in agreement with Mondilli⁽¹⁵⁾ *et al.* 2017 who showed that the fracture strength of endodontically treated teeth is inversely proportional to the amount of tooth structure removed . Also they were in agreement with Soares⁽¹²⁾ *et al.* 2008 who stated that the fracture resistance should be enhanced by minimizing tooth structure loss and keeping the post as small as possible. They also stated that the use of restorative material with mechanical properties similar to dental structure favour a greater longevity of the tooth restoration complex.

However, they were in disagreement with Bolay⁽¹⁶⁾ *et al.* 2012 who compared three types of post

sytems with a control group with no posts, and showed that the fracture resistance of endodontically treated teeth restored with using posts was higher than that of endodontically treated teeth restored without posts. This disagreement could be related to the difference in the methodology, as Bolay⁽¹⁶⁾ *et al.* 2012 decornated the teeth before testing.

Among the seven subgroups, the control group showed the highest fracture resistance values followed by the Rely-X red coded group of (1.60 mm) diameter, while the short titanium posts group of (1.3 mm) diameter showed the least fracture resistance values. The high fracture strength recorded for the Rely-X red coded posts may be due to its average diameter that minimized the loss of the tooth structure during cavity post space preparation. These results were in accordance with Zogheib et al. 2018⁽¹⁷⁾ who stated that reduced width of the preparation following the concepts of minimally invasive endodontics may lead to an increased fracture resistance. Our results were also in accoradance with Jayasenthil⁽⁹⁾ et al. 2016 who stated that posts with high modulous of elasticity cause the failure, as they lead to stress concentration to occur. Comparatively low modulus posts cause only little damage to the remaining tooth structure.

Regarding the fracture pattern analysis, the results of this study showed that the fracture occurred in all seven sub groups exhibited various patterns including vertical, horizontal, oblique, combined oblique + vertical, combined vertical + horizontal and comminuted. There was no significant difference between the seven groups regarding the mode of fracture. Mixed failures would probably be due to the structure of prefabricated post restorations, which created concentrated stresses at the interface between the post, the core and tooth structure that led to such failures (Eid *et al.* 2019)⁽¹⁸⁾.

The results of this study regarding the mode of fracture revealed that the type of fracture is not dependent on the type of the post used. This was in agreement with $Torabi^{(19)}$ *et al.* 2009 who

compared the fracture resistance of only obturated teeth (gutta percha obturation and resin sealer) with those restored with cast post and core using a direct technique, the polyethylene woven fiber preimpregnated fiber tape, a glass fiber post carbon fiber post.

CONCLUSIONS

Within the limitations of this study, it could be concluded that:

- Teeth obturated without the use of posts shows the highest fracture resistance among all materials and post systems.
- 2- The fracture patterns are not affected by the post systems used either with different diameters or materials.
- a. Conflict of interest: No conflict of interest.
- b. **Funding:** This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors
- c. **Ethics:** This study protocol was approved by the ethical committee of the faculty of dentistry- Cairo university on: 28/7/2020, approval number: 18-7-20

REFERENCES

- Rodríguez-Cervantes PJ., González-Lluch C., Sancho-Bru JL., Pérez-González A., Barjau-Escribano A., Vergara-Monedero M., Forner-Navarro L. Influence of material and diameter of pre-fabricated posts on maxillary central incisors restored with crown. J Oral Rehabil. 2009; 36:737-47.
- Walton RE., Torabinejad M. Principles and practice of endodontics, 3rd ed. Philadelphia, PA: WB Saunders and Company; 2002.

- Faria AC., Rodrigues RC., De Almeida Antunes RP., De Mattos Mda G., Ribeiro RF. Endodontically treated teeth: characteristics and considerations to restore them. J Prosthodont Res. 2011; 55:69-74.
- Russell Assil, Chandler Nicholas, Friedlander Lara.Vertical root fractures in root canal-treated teeth. Quintessence Int. 2017; 11:1-10.
- Khasnis SA., Kidiyoor KH, Patil AB, Kenganal SB. Vertical root fractures and their management. J Conserv Dent. 2014; 17:103-10.
- Piovesan EM., Demarco FF., Cenci MS., Pereira-Cenci T. Survival rates of endodontically treated teeth restored with fiber-reinforced custom posts and cores: a 97-month study. Int J Prosthodont. 2007; 20:633-9.
- 7. Salameh Z, Sorrentino R, Ounsi HF. The effect of different full-coverage crown systems on fracture resistance and failure pattern of endodontically treated maxillary incisors restored with and without glass fiber posts. J Endod 2008; 34:842–6.
- Mobilio N, Borelli B, Sorrentino R, Catapano S. Effect of fiber post length and bone level on the fracture resistance of endodontically treated teeth. Dent Mater J. 2013; 32:816-21.
- Jayasenthil A., Sathish SE., Aparna V P., Balagopal S., Fracture resistance of tooth restored with four glass fiber post systems of varying surface geometries-An in vitro study. J Clin Exp Dent. 2016;8: e44–e48.
- Akkayan B., Gülmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent. 2002; 87:431-7.
- Vikhe, D. M. Restoration of Endodontically Treated Teeth. IntechOpen. 2021.
- 12. Soares PV., Santos-Filho PC., Martins LR ., Soares CJ. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: Fracture resistance and

- 13. fracture mode. J Prosthet Dent. 2008; 99:30-7.
- Cantoro A., Goracci C., Vichi A., Mazzoni A., Fadda GM., Ferrari M. Retentive strength and sealing ability of new selfadhesive resin cements in fiber post luting. Dent Mater. 2011;27: e197-204.
- Tavano K.T.A., Botelho A.M., Douglasde-Oliveira D.W. Resistance to fracture of intraradicular posts made of biological materials. BMC Oral Health. 2020; 20:1-9.
- Mondelli, J., Sene, F., Ramos R.P. Benetti A.R. Tooth structure and fracture strength of cavities. Braz. Dent. J. 2007; 18:134-8.
- Bolay S., Ozturk B., Elif T., Behram Ertan. Fracture resistance of endodontically treated teeth restored with or without post systems. J. Dent. Sci. 2012; 7:148-53.

- Zogheib C., Sfeir G., Plotino G., Deus G., Daou M., Khalil I. Impact of minimal root canal taper on the fracture resistance of endodontically treated bicuspids. J Int Soc Prev Community Dent. 2018; 8:179-83.
- 19. Eid R., Juloski J., Ounsi H., Silwaidi M., Ferrari M. Salameh Z. Fracture resistance and failure pattern of endodontically treated teeth restored with computer-aided design/computer-aided manufacturing post and cores: A pilot study. J. Contemp. Dent. 2019; 2:56-63.
- Torabi K., Fattahi F. Fracture resistance of endodontically treated teeth restored by different FRC posts: an in vitro study. Indian J Dent Res. 2009; 20: 282–7.